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TECHNICAL NOTE D-371 

NATURAL FREQUENCIES I N  BENDING OF TWISTED 

ROTATING AND NONROTATING BLADES 

By G. Isakson and J. G. Eis ley 

SUMMARY 

The e f f e c t  of t w i s t  on the natural  frequencies of uniform and 
tapered nonrotating blades and the e f f e c t  of t w i s t  and blade angle on 
the  natural frequencies of rotat ing uniform blades a r e  shown by means 
of charts.  Both cant i lever  and a r t icu la ted  blades a r e  considered. O f f -  
set of the root  support from the axis of ro t a t ion  i s  a l s o  considered. 

The Rayleigh-Southwell procedure f q r  determining the e f f ec t  of 
r o t a t i o n  on natural frequencies of beam vibrat ion i s  evaluated w i t h  
respect  t o  twisted ro t a t ing  blades and fcmd t o  provide a useful  approxi- 
mation only i n  cer ta in  cases. 

A r e l a t i o n  developed by Lo  and Renbarger f o r  the e f f e c t  of blade 
azgle on the  Datura1 frequencies of a ro t a t ing  blade i s  found t o  provide 
a useful  approximation, under some circumstances, h i  the case of the 
fundamental frequency of a twisted cant i lever  blade. 

INTRODUCTION 

The seriousness of the rotor-vibrat ion problem i n  rotating-wing air- 
c r a f t  usually necess i ta tes  a f a i r l y  accurate knowledge of natural f r e -  
quencies of blade vibrat ion a t  the design stage.  It is, consequently, 
desirable  that e f f i c i e n t  means be avai lable  f o r  the estimation of these 
frequencies. 

While several  ana ly t ica l  methods have been developed i n  t h i s  area, 

They 
they a l l  involve lengthy computation procedures and can be applied e f f i -  
c i en t ly  only by the use of automatic d i g i t a l  computing machinery. 
a r e  thus not well  su i ted  f o r  use a t  a preliminary stage of design. 

A simplified procedure has been developed fo r  the rapid estimation 
of flapwise bending frequencies of r o t a t i n g  blades f o r  the case of zero- 
b u i l t - i n  t w i s t  and blade angle ( re f .  1). The appl icat ion of t h i s  
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procedure, however, is not restricted to 
extended to blades with moderate amounts 
common in most helicopters in the past. 

untwisted blades but may be 
of twist, such as have been 
It has been found that the 

effect of twist in these cases is not significant. 

The current and projected development of high-performance rotary- 
wing aircraft, including convertible aircraft, is bringing with it a 
trend toward substantially increased amounts of built-in twist of the 
rotor blades, to the extent that the effect of twist is no longer neg- 
ligible. Under these circumstances, it is desirable that simplified 
procedures of more general applicability, including the effect of twist, 
be available for the estimation of blade frequencies. The present 
investigation was undertaken to satisfy this need. 
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While a generalized treatment of the twisted-blade vibration problem 
for  combined torsional and bending motion is available (ref. 2), it was 
decided to limit the present consideration to bending alone to avoid 
introducing at one time an excessively large number of additional 
parameters. 

The objectives of the program were: (1) To develop simple approxi- 
mate procedures for the rapid estimation of natural frequencies of blade 

these frequencies and thus provide background information of value in 

coupling effects introduced by twist, the first objective has been only 
partially achieved; however, much information has been obtained in pur- 
suit of the second objective. 

vibration, and (2) to determine the effect of parametric variations on 

design. Because of the complex nature of the problem, particularly the - 
1 

The principal simplification investigGted was that involved in the 
use of the Rayleigh method to predict the natural frequencies of a 
rotating beam from a knowledge of the corresponding natural frequencies 
and mode shapes of the nonrotating beam. This method has been found to 
provide a good approximation in the case of untwisted beams (ref. l), 
and in the present work, its application to twisted beams is evaluated. 

Another simplification evaluated involves the application to 
twisted blades of a relation developed by Lo and Renbarger for the 
effect of blade angle on the frequencies of rotating untwisted blades. 

To provide a basis for these evaluations and to provide information 
on the effect of parametric variations, it was necessary to perform 
extensive computations using a more accurate method. A number of such 
methods are available (refs. 3 to 8). 
investigation, that the method best suited to the needs of the program 
and to the available computing machinery was one developed by Targoff 
(ref. 8) representing an adaptation of the familiar Holzer-Myklestad 

It was decided, after considerable 

c 
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(ref. 9 )  method to include the effects of twist and rotation. 
line of this method, as modified in the present work, is presented in 
the appendix. 

An out- 

The coordinates of the blade w e  shown in figure 1. The x-axis is 
coincident with the undeformed elastic axis, which is assumed to be 
straight and to lie in a plane normal to the axis of rotation, which is 
in turn assumed to be coincident with the axis of centroids of blade 
cross sections. The z-axis lies along the axis of rotation, and the 
y-axis is normal to the xz plane and positive toward the leading edge 
of the blade. The nomenclature and sign convention for displacements, 
shears, and bending moments a r e  illustrated in figure 2. 
conform to the conventional right-hand rule. 

Moment vectors 

In addition to the blade properties and parameters pertinent to the 
problem of fYee vibrations of rotating untwisted blades at zero blade 
angle, namely, spanwise distribution of mass and of stiffness about the 
major principal axis of the cross section, type of root support, and 
rotational velocity, the following properties and parameters enter the 
problem when the blade is twisted: Spanwise distribution of stiffness 
about the minor principal axis of the cross section, blade twist, and 
blade angular setting with respect to the plane of rotation. 

The data may be suitably generalized by expressing all properties 
and parameters in nondimensional form. Vibration frequencies and rota- 
tional velocity are nondimensionalized in the present work when multi- 

nliplj  by the quantity 
tribution are considered, one in which the mass and stiffnesses (both 
EI1 
nesses taper linearly to zero at the tip. The relative stiffness of 
the blade about the major and minor principal axes of the cross section 
is taken into account by means of the parameter 
support are considered, namely, cantilever and fully articulated, and 
this support is considered to be located at the axis of rotation and, 
additionally, offset 5 percent of the rotor radius from the axis of 
rotation. 

02 /EIl , .  Two types of mass and stiffness dis- P- I-- - - 

and E12) are uniform, and the other in which the mass and stiff- 

y .  Two types of root 

The present investigation was conducted at the University of 
Michigan under the sponsorship and with the financial assistance of 
the National Advisory Committee for Aeronautics. 

R 
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SYMBOLS 

EI1 ,EI2  bending s t i f fnes s  about major and minor pr incipal  axis  of 
cross section, respectively 

- - 
E12 = E 1  E 1  

21 20 
E 1 1  = E 1  E 1  I/ 10’ 

e of fse t  of root support from axis of ro t a t ion  

E = e /R 

K kinet ic  energy 
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‘cn Southwell coeff ic ient  f o r  nth na tura l  frequency (see  eq. ( 5 ) )  

2 length of blade segment 

bending moment about major and minor pr incipal  axes of cross 
section, respectively,  when centr i fugal  tension i s  assumed \ 

MlJM2 

t o  a c t  along undeformed posit ion of e l a s t i c  axis  
M 

m mass of blade segment 

P poten t ia l  energy 

R rotor  radius 

S coordinate i n  negative direct ion of x-axis measured from 
outer end of beam segment 

T centr i fugal  tension, s,” n*px dx 

R 
T 1  = PX dx 

4 

c 
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' -  shearing force in direction of minor and major principal axes 
of cross section, respectively 

v1J2 

X coordinate in direction of x-axis measured from axis of 
rot at ion 

P angle between major principal axis of cross section and plane 
of rotation 

np increment in p between blade segments 

displacement of elastic axis in y- and z-directions, 6 Y A  
re  spe c t ive ly 

displacement of elastic axis in direction of minor and major 
principal axes of cross section, respectively 

61762 

0 total twist in blade between x = 0 and x = R, 8 = -Rp' 

mass per unit length of blade 

displacements in y- and z-directions describing shape of nth 
natural mode of nonrotating blade 

natural frequency of blade vibration 

rotational velocity 

rectangular matrix 

column matrix 
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Subscripts: 

N nonrotating 

n order of natural  mode 

0 value a t  x = 0 

R ro t a t ing  

T value a t  x = R 

( ) I , (  ) ' I  di f fe ren t ia t ion  w i t h  respect t o  x 
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R A W  IGH- SOUTHWELL APPROXIMAT I O N  

I n  a f ree  vibrat ion of an e l a s t i c  beam a t  one of i t s  na tura l  fre- 
quencies, the kinet ic  energy of the beam at  zero displacement is  equal 
t o  i t s  poten t ia l  energy a t  maximum displacement. When the beam i s  
rotating, the poten t ia l  energy includes a pa r t  associated w i t h  t h e  
centrifugal-force f i e l d  i n  addition t o  the s t r a i n  enerQy. 

- 
Considering displacements both normal t o  and i n  the plane of rota-  -.. 

t ion ,  kinetic energy K may be wri t ten 

R 
K = + % , 2  $, P@yn * + 6zn*)dx 

where n r e fe r s  t o  the mode  under consideration. 

Similarly, the  poten t ia l  energy P may be wri t ten 

where the f i rs t  t e r m  i s  the s t r a i n  energy and the second t e r m  i s  asso- * 

ciated with the centrifugal-force f i e l d .  
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Equating equations (1) and ( 2 )  and solving f o r  2 y i e ld  
n 

and €iZn represent the 
'Yn 

t rue  mode shape fo r  the ro ta t ing  beamwhich is, i n  general, not known 
i n i t i a l l y .  It w i l l ,  however, provide an approximate value of the f r e -  
quency i f  a mode shape i s  used which resembles the true mode shape. 
a s  i n  the  case of the untwisted beam, the ro ta t ion  of the beam does not 
great ly  change the natural  mode shapes, it can be expected tha t  equa- 
t i o n  (3) w i l l  y ie ld  a sa t i s fac tory  approximate value fo r  when the 

corresponding mode shape gYn,gzn for the nonrotating beam i s  used. 
When that i s  done, the first term on the right-hand side becomes the 
corresponding natural  frequency of the nonrotating beam, and the equa- 
t i o n  may be writ ten 

Equation (3 )  i s  correct only when 

If, 

% n 

where 

and i s  seen t o  depend only on the mass dis t r ibu t ion  of the beam and the 
shape of the nth natural  mode when il = 0. It is  re fer red  t o  as the 
Southwell coeff ic ient .  

PROGRAM OF INVESTIGATION 

A program of computations w a s  performed fo r  selected values of the 
s ign i f icant  parameters, using the method of the appendix w i t h  the blade 
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divided i n t o  t e n  equal segments. The e r r o r  i n  frequency introduced by 
t h i s  approximate representation when the blade i s  nonrotating w a s  found 
t o  be positive and w a s  estimated t o  be about 1.5 percent i n  the case of 
the highest modes considered and t o  decrease accordingly f o r  the lower 
modes. There i s  evidence, as discussed i n  the following section, of 
fur ther  e r r o r  
which consequently tends t o  reduce the r a t i o  of the higher frequencies 
t o  their  nonrotational values. These e r ro r s ,  while not insignif icant  
i n  themselves, should not be substant ia l ly  influenced by t w i s t  and, con- 
sequently, would not be expected t o  mask the e f f e c t  of t w i s t  on the nat- 
ural frequencies. 

introduced i n  the r o t a t i o n a l  case, which i s  negative and 

As discussed i n  the Introduction, two types of mass and s t i f f n e s s  
dis t r ibut ion were considered, namely, uniform dis t r ibu t ion  and l i nea r  

taper  t o  zero at  the t i p .  I n  general, three values of y2 (0, 0.01, 
and 0.1) w e r e  considered w i t h  a f e w  calculations performed f o r  

r2 = 0.0254. The blades were assumed t o  be twisted l i n e a r l y  w i t h  the 
t o t a l  angle of t w i s t  
t i p ,  being given values of Oo, l5O, and TO0. 
r e f e r  t o  a blade-tip angle smaller than the corresponding blade-root 
angle. 
angular s e t t i ngs  were considered, involving p values a t  the t i p  of Oo, 
150, and TOo. Two d i f fe ren t  types of root  support, namely, cant i lever  
and fu l ly  a r t i cu la t ed ,  were considered, the locat ion of t h i s  support 
being e i ther  a t  the axis  of ro ta t ion  ( E  = 0) o r  o f f s e t  from it by an 
amount equal t o  5 percent of the ro to r  radius  ( 5  = 0.05).  

8, measured from t h e  axis of ro ta t ion  t o  the blade 
Posit ive values of 8 

For each of these values of t w i s t  angle three d i f fe ren t  blade 

' 

The ro ta t iona l  velocity parameter p w a s  varied from 0 t o  13, w i t h  
the  bulk of the computations performed a t  values of 0, 10, and 15. This 
range i s  believed t o  include most p r a c t i c a l  cases. Mode shapes were 
determined i n  the cases of zero r o t a t i o n  and t h i s  information w a s  used 
i n  testing the Rayleigh-Southwell approximation f o r  the e f f e c t  of ro t a -  
t i o n a l  velocity. 

Another approximation considered w a s  the Lo and Renbarger r e l a t i o n  
f o r  t he  e f f ec t  of blade angle on the na tura l  frequencies of an untwisted 
ro ta t ing  blade w i t h  7 = 0 (ref.  10) 

T h i s  re la t ion,  which i s  exact f o r  l inear ized vibrat ion theory f o r  
untwisted blades, w a s  t es ted  f o r  appl icabi l i ty  as an approximation i n  
the determination of the fundamental frequency of a tyisted,  rotat ing,  
cantilever blade, using the blade angle a t  the root .  

\ 
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DISCUSSION OF RESULTS 

Nonrotating Twisted Blade 
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The influence of t w i s t  and of the  parameter 7 on the na tu ra l  f r e -  
quencies of a nonrotating blade i s  shown i n  f igures  3 t o  6, inclusive.  
The fundamental frequency i s  almost completely unaffected by these two 
parameters i n  every case considered. I n  f igures  3 and 4 the fundamental 
frequency i s  given by the sol id- l ine curve nearest  the o r ig in  and i s  the 
same f o r  a l l  values of 7 considered. The e f f e c t  of 7 can a l s o  be 
expected t o  remain slight as long as 7 i s  not close t o  1. I n  figures 5 
and 6 the  fundamental frequency curve coincides w i t h  the  horizontal  
coordinate axis .  
with increase i n  t w i s t  but  it i s  not d i scern ib le  on the graphs. 

There i s  ac tua l ly  a very s l i g h t  increase i n  frequency 

Figures 3 and 4 i l l u s t r a t e  the  e f f e c t  of 7 on the  higher f r e -  
quencies considered. On these p lo t s  t he  bending s t i f f n e s s  EI1 remains 
constant as 7 i s  varied; that  is, only the s t i f f n e s s  E12 i s  varied. 
Th i s  occurs d i r ec t ly  as a r e s u l t  of nondimensionalization of cu i n  
terms of E1 

10 

For y2 = 0, that is, fo r  the blade i n f i n i t e l y  st iff  about the  minor 
p r inc ipa l  axis, it is seen t h a t  the  higher modes reduce i n  frequency as 
the t w i s t  i s  increased. As 7 i s  increased, an addi t ional  spectrum of 
frequencies moves t o  the l e f t  which, f o r  zero t w i s t ,  corresponds t o  modes 
i n  bending about the minor pr incipal  axis of the  cross sect ion ( chordwise 
bending). 
i n  value t o  a frequency i n  the or iginal  set f o r  bending about the  major 
pr inc ipa l  ax is  (flapwise bending), twist has a strnng c n q l i n g  effect 
and tends t o  dr ive the two frequencies apar t .  Calculations were performed 
f o r  
wise bending frequency fo r  the untwisted case coincides w i t h  the  second 
frequency i n  flapwise bending. 

It i s  seen t h a t ,  whenever one of these frequencies is close 

7* = 0.0254 t o  i l l u s t r a t e  w h a t  happens when the fundamental chord- 

Figures 5 and 6 show the same frequency var ia t ions on a percentage 
Lubib. it snoGa De notea tnat some ot' the frequency r a t i o s  correspond 
t o  modes which, for  zero t w i s t ,  involve displacement i n  the d i r ec t ion  
of the major pr inc ipa l  axis of the  cross section. It i s  seen that, f o r  
the most pa r t ,  the  e f f e c t  of t w i s t  i s  subs tan t ia l ly  reduced with the 
introduct ion of taper  i n  mass and s t i f fnes s  d is t r ibu t ion .  

Mode shapes a re  presented i n  figure 7 for  nonrotating, uniform, 
twisted blades fo r  several  frequencies. Figure 7(c)  i s  fo r  a cant i lever  
blade with 30° t w i s t  and which w a s  chosen because it repre- 
sents  a blade f o r  which the first chordwise frequency and second flapwise 

y2 = 0.0254 
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frequency of the corresponding untwisted blade coincide. Mode shapes 

fo r  both ro ta t ing  and nonrotating untwisted blades w i t h  
given i n  reference 1. 

7' = 0 are  

Rotating Twisted Blade 

Figure 8 demonstrates the combined ef fec t  of t w i s t  and ro ta t iona l  
velocity on the absolute values of the natural frequencies fo r  d i f fe ren t  
values of 7 fo r  the case of the cantilever beam. When 7 = 0, the 
frequencies a re  a l l  w e l l  separated and the trends introduced by t w i s t  
a t  zero ro ta t iona l  velocity are maintained as ro ta t iona l  velocity is  
increased, except t h a t  the e f f ec t  of t w i s t  on the frequency of the funda- 
mental mode becomes qui te  pronounced a t  the higher values of p i f  the 
tip-blade angle is maintained constant. 
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T h i s  s i tua t ion  i s  a l t e r ed  considerably as  7 i s  increased because 
of important coupling e f f ec t s  introduced by t w i s t .  It i s  seen tha t  for  
zero t w i s t  and zero blade angle the e f f ec t  of ro ta t ion  on the frequencies 
fo r  flapwise bending i s  much greater  than tha t  on the frequencies for  
chordwise bending. A s  a consequence, frequency curves fo r  flapwise and 
chordwise bending may cross, and t h i s  is  indeed what happens for  both 
r2 = 0.01 and 
case. However, when t w i s t  i s  introduced, the intersect ions no longer 
occur. Th i s  must be a t t r i bu ted  t o  a strong influence of t w i s t  i n  
coupling the flapwise and chordwise motions, and it must be concluded 
that, because of t h i s  coupling, the character of the individual modes 
changes substant ia l ly  and continuously as the ro t a t iona l  velocity i s  
increased from zero t o  large values. 

I 
r2 = 0.1, two such intersect ions occurring i n  the  l a t t e r  

I- 

Presentation of the frequency data i n  the manner of f igure 8, while 
valuable i n  demonstrating the e f f ec t s  j u s t  discussed, does not lend 
itself well t o  a generalization of the data i n  a useful  form. 
purpose it is preferable t o  express the natural  frequencies of the 
ro ta t ing  blade in  the form of a r a t i o  t o  the corresponding frequencies 
of the  nonrotating blade, and the ro ta t iona l  velocity i n  the form of a 
r a t i o  t o  the fundamental frequency of the nonrotating blade. Th i s  i s  
done i n  f igures  9 t o  13. These figures demonstrate the e f f ec t  of t i p  
blade angle PT for  given values of t o t a l  t w i s t .  In most cases data 
a r e  presented for  both zero and 5 percent o f f se t  and fo r  both cantilever- 
and articulated-type root support. It i s  seen tha t ,  w h i l e  the e f f ec t  
of blade angle i s  large i n  the case of the fundamental frequency r a t i o ,  
i t s  e f fec t  decreases rapidly as the order of the frequency i s  increased 

tha t  t w i s t  tends t o  reduce the blade-angle e f f ec t  on the higher 
frequencies. 

For t h i s  

and f o r  many of the higher frequencies i s  negligible.  It appears a l so  1 

- 
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It should be noted that  the discontinuity i n  slope of some of the 
curves f o r  zero t w i s t  ( f i g s .  lO(b) and l l ( a ) )  i s  a t t r ibu tab le  t o  the 
f a c t  tha t  the curves are plo t ted  f o r  modes of given order and when a 
discontinuity occurs, the mode of given order changes abruptly from a 
chordwise t o  a flapwise mode, or  vice versa, as seen i n  f igure 8. 
no abrupt change occurs i n  the character of a mode with increase i n  
r o t a t i o n a l  velocity when the blade i s  twisted ( f i g .  8) the curves f o r  
the twisted blades are smooth. The same is  apparently t r u e  when there  
i s  zero t w i s t  but the blade angle i s  other than zero ( f i g .  l l ( a ) )  since 
blade angle i n  the ro ta t iona l  case also has the e f f e c t  of coupling 
bending vibrations i n  the direct ions of the two pr inc ipa l  axes of the  
cross section. I n  the case of t h e  higher modes t h i s  e f f e c t  appears t o  
be small at  moderate values of the blade angle ( f ig s .  10(b) and l l ( a ) ) .  

Since 

The e f f e c t  of o f f se t  of the root  support i s  seen t o  follow the 
trend disclosed i n  reference 1 f o r  untwisted blades; tha t  is, the cen- 
t r i f u g a l  force has an increased s t i f f en ing  e f f e c t  and consequently 
increases the frequency r a t i o .  I n  view of the conclusion reached i n  
reference 11, that the frequencies depend almost l i nea r ly  on the amount 
of o f f s e t  i n  the  case of an untwisted beam a t  given ro ta t iona l  velocity, 
it appears safe t o  extend t h i s  conclusion t o  twisted beams w i t h  moderate 
o f f s e t ,  and t o  determine frequencies f o r  aqom-ts of o f f s e t  other than 
those specified here by l i nea r  interpolation or extrapolation from the 
present data. 

For the p a p ~ s e  of eva lua t ing the  e f f e c t  of t w i s t ,  t h e  p l o t s  of 
'3 f igures  14  t o  20 a r e  advantageous. F igwe 14 GhGVS that ,  fo r  7' = 0, 

the  fundamental frequency of t h e  uniform cantilever beam i s  highly 
dependent on t w i s t  when the blade angle a t  the t i p  i s  maintained con- 
s t a n t  and only s l i g h t l y  dependent on t w i s t  when the blade angle a t  the  
root  i s  maintained constant. I n  t h i s  case the dependence i s  primarily 
on root  blade angle r a the r  than t w i s t .  
the  t rend of the curves w i t h  t w i s t  var ia t ion when the t i p  and root  
angles are maintained constant indicates t h a t  there is  an intermediate 
s t a t i o n  not far from the root ,  such that,  i f  the blade angle i s  main- 
ta ined constant a t  t h a t  s ta t ion,  the fundamental frequency w i l l  be inde- 
pendent of t w i s t .  It can be anticipated t h a t  i t s  locat ion i n  the general 
case w i l l  be dependent upon the mass and s t i f f n e s s  d is t r ibu t ion  of the 
blade and t h a t  it w i l l  tend t o  move outward with increasing taper  i n  
s t i f f n e s s .  

Furthermore, the reversa l  i n  

I n  the case of the higher modes, it i s  seen t h a t  t w i s t  has a neg- 
l i g i b l e  e f f e c t  on frequency, irrespective of where the blade angle i s  
maintained constant. In  view of this conclusion and the corresponding 
small effect  of blade angle discussed e a r l i e r ,  it appears that  the fre- 
quency r a t i o s  for  these modes can be estimated s a t i s f a c t o r i l y  by neg- 
l e c t i n g  blade angle and t w i s t  when the blade i s  very s t i f f  i n  chordwise 
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bending r e l a t i v e  t o  flapwise bending (72  << 0.1). 
data of reference 1 could be used. 
determine the na tura l  frequencies of the nonrotating twisted blade i n  
order t o  convert frequency r a t i o s  i n t o  ac tua l  frequencies. 
purpose, methods such as those of the  appendix or  reference 12 could be 
used. 

For t h i s  purpose the 
It would, of course, be necessary t o  

For t h i s  

Figure 15 indicates  that ,  when 
those discussed above with regard t o  the fundamental frequency of the 
uniform cant i lever  blade when y2 = 0 apply again. I n  the  case of 
those higher frequencies which evidence subs tan t ia l  coupling e f f ec t s ,  
there  is now a moderate influence of t w i s t  on the frequency r a t i o .  

72 = 0.01, conclusions similar t o  

When 72 i s  increased fur ther  t o  the value 0.1, there  i s  sub- 
s t a n t i a l  coupling between the  fundamental flapwise and chordwise modes, 
but it is  s t i l l  seen ( f i g .  16) that the  frequency r a t i o s  f o r  these modes 
a r e  primarily functions of root  angle and a r e  only s l i g h t l y  dependent 
on twist .  In  the  case of the higher modes, coupling i s  again seen t o  
e f f e c t  a moderate dependence of frequency r a t i o  on t w i s t .  

Results f o r  the cantilever tapered blade fo r  72 = 0, including the 
o f f s e t  root condition, a r e  given i n  f igure  17. These curves represent 
a l l  the data avai lable  fo r  the tapered cant i lever  blade and exhibi t  no 
important qua l i t a t ive  differences when compared with the uniform cant i -  
l ever  blade. 

In  the  case of t he  uniform a r t i cu la t ed  blade ( f i g s .  18 and lg), t he  
r e l a t ive  absence of coupling e f f e c t s  f o r  t he  parametric values and modes 
considered produces r e s u l t s  similar t o  tho;e discussed above i n  connec- 
t i o n  w i t h  t he  cant i lever  blade with The fundamental frequency 
r a t i o  i s  again independent of t w i s t  i f  the blade angle i s  maintained 
constant a t  an intermediate s ta t ion ,  which i n  t h i s  case can be expected 
t o  be considerably f a r the r  out along the blade. The frequency r a t i o  
f o r  t h e  second mode i s  seen t o  be v i r t u a l l y  independent of both t w i s t  
and blade angle. 
( f i g .  a), no e f f e c t  of t w i s t  on the  frequency r a t i o s  f o r  t he  f i r s t  and 
second modes i s  discernible  when the  blade angle a t  the  t i p  i s  held 
constant. 

72 = 0 .  

I n  the  case of t he  tapered a r t i cu la t ed  blade f o r  y* = 0 

Evaluation of Rayleigh-Southwell Approximation 

The Rayleigh-Southwell approximation was applied t o  the lumped mass 

y2 = 0, the e r ro r  
system f o r  most of the zero o f f se t  cases and the r e s u l t s  a r e  shown i n  
f igures  9 t o  13. 
introduced by the approximation i n t o  the fundamental frequency of the 
uniform cantilever blade increases s l i g h t l y  with t w i s t  and with blade 
angle i n  the range considered. 
e f f e c t  on the  accuracy of the approximation i n  the  case of the  higher 
frequencies. 

It is  seen fYom figure 9 tha t ,  w i t h  

These parameters a r e  seen t o  have l i t t l e  

\ 

- 
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Figures 10 and 11 indicate tha t ,  as 7 i s  increased, conclusions 
similar t o  those reached above f o r  s t i l l  apply i n  the case of 
frequencies which are not substantially influenced by coupling between 
bending about t he  two pr incipal  axes of the cross section. On the other 
hand, where such coupling i s  large, the curves of frequency r a t i o  depart 
rad ica l ly  from a s t r a igh t - l i ne  variation and the Rayleigh-Southwell 
approximation loses  i t s  value except a t  low values of the ro ta t iona l  
velocity.  This could e a s i l y  be anticipated since the mode shapes, i n  
such cases, can be expected t o  change radical ly  with increase i n  the 
r o t a t i o n a l  velocity. 

r2 = 0 

I n  the case of the a r t i c u l a t e d  blade ( f i g s .  12 and 13), no strong 
coupling e f f e c t s ,  as discussed above, were encountered for the  parametric 
values considered. Consequently, the Rayleigh-Southwell approach based 
on the lumped mass system w a s  found t o  y i e ld  a va l id  approximation i n  
these cases. I n  f ac t ,  the approximations f o r  the first mode f o r  the 
zero o f f s e t  a r t icu la ted  blade coincided with the calculated results and 
could not be shown as separate curves. 

A check of a f e w  cases indicates t h a t  s i m i l a r  accuracy can Se 
expected for o f f s e t  root  conditions for both the cantilever and a r t i cu -  
l a t e d  blade. 

Evaluation of Lo and Renbazger Relation 

i n  Application t o  Twisted Blades 

The appl icabi l i ty  of equation (6)  i n  the determination of the funda- 
mental frequency of a rotat ing,  uniform, twisted, canti lever blade, using 
the blade angle a t  the root,  i s  i l l u s t r a t e d  i n  figure 21. It i s  seen 
t h a t  t h e  accuracy of t h i s  r e l a t i o n  deter iorates  somewhat with increase 
i n  t w i s t  but it s t i l l  represents a valid approximation f o r  estimation 
purposes. It i s  seen a l s o  t h a t  the slope of the actual  curves i s  very 
close t o  t h a t  of the approximation. Results are not presented f o r  
y2 = 0 .1  since the large coupling effects  present i n  t h a t  case would 
be expected t o  make equation (6) inapplicable. 

COJJCLUSIONS 

On the bas i s  of the data presented, a number of conclusions can be 
reached concerning the natural  frequencies of twisted nonrotating and 
r o t a t i n g  blades. These a re :  

1. The fundamental frequency of canti lever and ar t icu la ted  nonro- 
t a t i n g  blades i s  effect ively independent of t w i s t  i f  the bending 
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s t i f fnes s  about the minor pr incipal  ax i s  of the cross section i s  a t  
least three times as large as the bending s t i f f n e s s  about the major 
principal ax is .  

2. The second and t h i r d  natural  frequencies of nonrotating canti-  
lever  blades and the second natural  frequency of nonrotating a r t icu la ted  
blades decrease with increase i n  t w i s t  i f  the s t i f f n e s s  about the minor 
principal ax i s  of the cross section i s  very large i n  r e l a t i o n  t o  the 
s t i f fnes s  about the major pr incipal  axis .  

3. When two frequencies of a nonrotating untwisted blade are close W 
i n  value, the introduction of t w i s t  tends t o  increase the separation of 1 
the  two frequency values. 3 

5 
4. The e f f e c t  of t w i s t  on the lower natural  frequencies of nonro- 

t a t i n g  blades decreases with increase i n  taper of both mass and s t i f f n e s s .  

5 .  The fundamental frequency of a r o t a t i n g  twisted cantilever blade 
depends primarily on root-blade angle and only secondarily on t w i s t .  It 
i s  independent of t w i s t  when the blade angle i s  maintained constant a t  
an appropriately selected intermediate s t a t i o n  close t o  the  roo t .  The 
lbcation of t h i s  s t a t i o n  can be expected t o  depend upon the spanwise dis- 
t r ibut ion of mass and s t i f f n e s s .  A similar s t a t i o n  e x i s t s  i n  the case 
of the fundamental frequency of a ro ta t ing  twisted a r t i c u l a t e d  blade, 
but it i s  located considerably fu r the r  outboard. 4 

. , 

6. When curves of na tura l  frequency versus ro ta t iona l  velocity f o r  
an untwisted blade s e t  a t  zero blade angle cross, the introduction of 
t w i s t  or blade angle tends t o  couple the corresponding modes and y ie lds  
frequency curves which do not cross. 

7. When coupling e f f ec t s ,  as discussed i n  item 6, a r e  not appreci- 
able,  the e f f e c t  of t w i s t  and blade angle on the r a t i o  of r o t a t i n g  t o  
nonrotating frequencies of the higher modes i s  small or negligible.  
Even when such coupling e f f e c t s  are large, the frequency r a t i o  i s  not 
highly sensit ive t o  blade angle or  t w i s t .  

8. Offset of the root support increases the frequency r a t i o .  

9. Rayleigh-Southwell approximation y ie lds  r e s u l t s ,  i n  the case of 
twisted rotating blades, which a re  similar t o  those of t he  untwisted 
blade a t  zero blade angle fo r  the higher modes when coupling e f f e c t s  of 
the s o r t  discussed i n  item 6 a r e  not i n  evidence. When such-coupling 
e f f e c t s  are i n  evidence, the approach y ie lds  - very poor r e s u l t s  except 
a t  small values of ro ta t iona l  velocity.  The fundamental frequency of 
a cantilever blade i s  l e s s  well represented by the Rayleigh-Southwell 
approximation when t w i s t  and blade angle a r e  introduced. On the other 
hand, the accuracy of the approximation i n  determining the  fundamental 
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frequency of an a r t i cu la t ed  blade i s  re la t ive ly  insens i t ive  t o  t w i s t  
and blade angle. 

10. The r e l a t i o n  of Lo and Renbazger fo r  the  e f f e c t  of blade angle 
on na tura l  frequency of ro t a t ing  blades i s  found t o  be useful  i n  deter-  
mining the  fundamental frequency of  twisted cant i lever  blades when the 
blade angle i s  measured a t  the root  of t he  blade and the  fundamental 
mode i s  not subs tan t ia l ly  coupled w i t h  other modes. 

University of Michigan, 
A n n  Arbor, Mich., Apri l  17, 1959. 
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APPENDIX 

METHOD OF ANALYSIS 

The present method of analysis  i s  a modification of a method devel- 
oped by Targoff ( r e f .  8) which i n  tu rn  is  an extension and adaptation 
of the familiar Holzer-Myklestad method ( r e f .  9 )  t o  the case of bending 
of a twisted ro t a t ing  beam. 

The beam i s  divided spanwise i n t o  a number of segments, not neces- 
s a r i l y  equal i n  length.  
a t  i t s  center,  and the  bending s t i f fnes ses  EI1 and E12 and angle of 
incidence p a r e  assumed constant between masses, appropriate average 
values being selected.  The t w i s t  of the beam i s  accounted f o r  by r e l a -  
t i v e  rotat ions of adjacent uniform bays (between masses) about a span- 
w i s e  axis, the change i n  angle &! being equal t o  the t o t a l  t w i s t  i n  a 
segment and occurring j u s t  outboard of the mass ( f i g .  22).  

The mass of each segment i s  assumed concentrated 

W 
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3 
5 

The quant i t ies  V1, Ml, 611, €jl, V2, &, S2',  and €j2 ( f i g .  2) ,  
which apply when the beam i s  a t  its maximum displacement i n  a f r e e  vibra- \ 

t i on ,  are defined a t  s t a t ions  along the beam and may be represented a t  
any s ta t ion  i n  the form of a column matrix, 

c 

. 

The elements of t h i s  matrix w i l l  vary along the  beam i n  such a 
manner that the var ia t ion  can be considered t o  occur i n  a s e r i e s  of 
s teps .  
(a> occurring from a s t a t i o n  immediately outboard of one mass t o  a sta- 
t i o n  immediately outboard of the next mass can be broken down in to  three  

1 Moving f romthe  t i p  toward the root  of the beam, the change i n  
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0 0 0  0 
0 0 0  0 

Y 

steps,  the first involving movement across the mass, the second involving 
movement f’rom one end t o  the other of t he  weightless uniform bay, and 
the  th i rd  involving movement across  the discont inui ty  i n  p.  

The re la t ionship  between the A matrices as they apply a t  the two { I  
extremes of t h i s  t r a v e l  can be represented as follows: 

where [F], [E), and [R] a r e  rectangular matrices representing l i nea r  
re la t ionships  corresponding t o  the three s teps  discussed previously. 

The [F] matrix, r e l a t ing  the @}matrices on e i the r  s ide of a con- 
centrated mass, i s  wri t ten a s  follows: 

1 o o m(&’ + iPsin2p) 
0 1 0  -d2X 

0 0 1  0 
10 0 0 1 

10 0 0 0 

i o  o o 0 

I i o  o o -&%in p cos p 

b o o  0 

( ~ 2  j 

It i s  seen tha t  only the shear forces and >ending n ~ i n e n t s  are  changed 

i n  shear force a r e  due pa r t ly  t o  the i n e r t i a  force associated w i t h  the  
v ibra t iona l  motion of the mass and par t ly  t o  the component of cent r i fuga l  
force normal t o  the undeformed posit ion of the e l a s t i c  ax is .  The change 
i n  bending moment i s  f i c t i t i o u s  and a r i s e s  f’rom a spec ia l  fea ture  of the 
analysis .  T h i s  fea ture  involves the replacement of the component of the 
cent r i fuga l  force p a r a l l e l  t o  the undeformed pos i t ion  of the e l a s t i c  
axis uy an equal rorce along tne  l ine  o r  the  undeformed axis and an 
appropriate couple t o  provide s t a t i c  equivalence. The changes i n  bending 
moment indicated i n  the [F] matrix are then due only t o  the applied 
couple, the moment due t o  the force applied along the undeformed axis  
being accounted fo r  i n  the [E] matrix. When moments due t o  both sources 

should be noted tha t ,  on the basis of t h i s  procedure, the bending moment 
a t  any s t a t i o n  i s  not M, bu t  ra ther  M plus  the  moment of the t e n s i l e  

UILILL P .i m ,.a there  are no discont inui t les  i n  slope or dispiaceuent. The changes 

P a r e  considered, the discontinuity i n  bending moment disappears. It 

4 force T ac t ing  along the undeformed e l a s t i c  axis .  
I 
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The elements i n  t h e  [E] matrix a r e  found by solut ion of the d i f -  

For bending about the maJor pr inc ipa l  axis of the cross sec- 
f e r e n t i a l  equation fo r  bending i n  the weightless uniform bay between 
masses. 
t i on ,  t h i s  equation i s  wri t ten 

6 1 " E I l  = Vis + (M1 + T61) (A3) 

where Vi and M1 apply a t  the outboard end of the bay and s i s  a 
spanwise coordinate measured inward from the  outer end of the  bay, 

The solut ion of equation (A3) is  

where 

of the  cross section, the elements of 

Substi tuting s = 2 i n t o  t h i s  solut ion and i t s  f i rs t  der ivat ive 
and in to  a similar solut ion f o r  bending about the minor pr inc ipa l  axis - ~ 

the [El matrix are obtained. 
T h i s  matrix 

[E] = 

is  presented as follows: 

1 ' 0  0 0 

1 1 0 0 

E31 E32 E33 E34 

E41 E42 E43 

- 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

L J  

0 

0 

0 

0 

1 

2 

E75 

E85 

0 

0 

0 

0 

0 

1 

E76 

E86 

0 

0 

0 

0 

0 

0 

E77 

E87 

w~ 
1 
3 
5 



where 

w 
1 
3 
5 

T 

E43 = - 
P1  

E75 = -E86 = - - T '[ cosh (+L ]  p-2 

It should be noted tha t  61' and 62' are  posi t ive fo r  increasing 
def lect ion i n  the posi t ive direction of x. 

The [R] matrix serves merely t o  ro t a t e  the coordinate axes through 
the angle 43 ,  and i s  wri t ten as follows: 
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[Rl = 

:os 4 3  

0 

0 

0 

iin 4 3  

0 

0 

0 

0 

cos 4 3  

0 

0 

0 

sin 4 3  

0 

0 

0 

0 

cos 4 3  

0 

0 

0 

sin 4 3  

0 

0 

0 

0 

cos 4 3  

0 

0 

0 

sin 4 3  

-sin 4 3  0 0 0 

0 -sin 4 3  0 0 

0 0 -sin 4 3  0 

0 0 0 -sin A 

cos 4 3  0 0 0 

0 cos 4 3  0 0 

0 0 cos 4 3  0 

0 0 0 cos L? 
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By a successive multiplication of the appropriate matrices, a 
linear relationship can be established between the matrices at the 
root and tip of the beam: 

c 

Recognizing that the shears and bending moments are zero at the tip 
c 

of the beam, the (.)tip matrix can be reduced to a four-element matrix 
and the corresponding four columns of the [C] matrix eliminated. 
fact, these four columns can be eliminated from the first [FJ matrix at 
the tip of the beam, and successive multiplications w i l l  then yield an 
8 x 4 matrix product. 

In 

Satisfaction of the boundary conditions at the root of the beam 
then requires that the determinant of a 4 x 4 matrix, formed from appro- 
priate elements of the b' matrix, be equal to zero. The elements of 
this determinant will be polynomials in 2, and upon expansion a poly- 
nomial equation in u? will be obtained. In principle, the natural 
frequencies of the beam could be determined by solving for the roots of 
this equation; however, such a procedure is far too cumbersome to be 
feasible. 

A more practical procedure involves the introduction of trial values 
of w into the various [F] matrices and evaluating the elements of all 
the matrices numerically. The matrix multiplications can then be carried 
out numerically and the appropriate determinant evaluated. 

\ 

The value of 
this determinant, which may be termed the "residual," may then be plotted -. 



versus u) or 3 and the location of zeros of the residual will deter- 
mine the natural frequencies of the bean. 

r 
1 0 0  

0 1 0  

0 0 1  

0 0 0  

0 0 0  

0 0 0  

0 0 0  

0 0 0  - 

For the purposes of a parametric survey, it is desirable to treat 
the problem in nondimensional form. Toward this end, the (.) matrix 
can be redefined in terms of nondimensional forces and moments as follows: 

MlR/  EIlO 

61 ' 

62 ' 

The corresponding nondimensional forms for the [F] and k] matrices 
are as follows, the [d matrix remaining unchanged: 

0 

1 

0 

0 

0 

0 0 0  

0 0 0  

0 0 0  

0 0 0  

1 0 0  

0 1 0  

0 0 1  

0 0 0  
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[El = 

where 

1 0 0 0 0 0 0 0 '  
- 
1 1 0 0 0 0 0 0 

0 0 0 0 
- - - - 

E34 - - 
E33 
- 

c31 E32 
- 

'41 E42 E43 E44 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 2 1 0 0 

0 0 

0 

- 
- - - - 

0 0 E75 E76 E77 E71 
- - - - 

0 0 0 E85 E86 E87 E8t 

w 
1 
3 
5 



For the case of zero rotational velocity, the [F] matrix is obtained 
directly by substitution of p = 0. When this substitution is made in 
the [E] matrix, some of the elements are found to be of indeterminate 
f o r m  and a limiting process must be applied. This results in: 

[El = 

1 0 0 

- 
2 1 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 

0 0 

0 0 

0 0 

1 0 

- 
1 1 

- 
0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

1 0 

- 
-1  1 

- 
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It has been found that a direct application of the method as indi- ... cated leads to computational difficulties under some circumstances. 

Roundoff errors in the succession of matrix multiplications and small 
differences between large numbers in the determinant expansion may 
result in considerable random error in the values of the residual, 
making it difficult to obtain an accurate estimate of the natural fre- 
quencies. 
small and when only the lower natural frequencies are desired. The 
errors increase with increase in the rotational velocity and the order 
of the desired natural frequencies and may become very troublesome. 

Such errors are negligible when the rotational velocity is 

W 
This difficulty can always be overcome by a sufficient increase in 1 

3 
5 

the number of significant figures carried in the computations, 
by the use of double-precision programming in machine computation, 

such as 
but 

only at the price of increased programming complexity, increased storage 
requirements, and greatly increased computing time. An alternative 
scheme for circumventing it has been devised by Targoff (verbal comuni- 
cation) which involves a refinement of the basic method for values of 
frequency in the neighborhood of an expected solution. The basic method 
is applied at such a value and three of the four unknown tip quantities 
(deflections and slopes) are related linearly to the fourth by solution 
of three of the four homogeneous equations obtained from equation (A6) 
for satisfaction of the root boundary conditions. This corresponds to 
an approximate mode shape. The correction to this approximation to 
yield the exact mode shape may then be represented as follows: 

where ala', 62,', and 62, correspond to the approximate mode nor- 
malized for 6 1  = 1. Thus, the following relation may be written: 
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(.)tip = 

w 
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0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

1 0 

0 1 

If this relation is substituted into equation ( A 6 )  and the succes- 
sive matrix multiplications are repeated, starting with the new 
8 x 4 matrix introduced by this substitution, it is found that the resid- 
uals determined in this manner show greatly reduced scatter and permit 
a more accurate determination of the natural frequencies. 
noted that the present modification does not change the values of the 
frequency at which the zeros of the residual occur, since it involves 
the addition to one column of the determinant of a linear combination 
of other columns, thus not changing the exact value of the determinant 
but. merely scaling down one of its columns. 

It should be 
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Figure 1.- Coordinate axes of blade. 
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(a) Displacements. 
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(b ) Moments. 

(c) Shears. 

Figure 2.- Nomenclature and sign convention for displacements, bending 
moments, and shears (view of cross section looking toward axis of 
rotation). 
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(a) Cantilever blade; 72 = 0.01. 

Figure 7.- Representative mode shapes of nonrotating uniform blades; 
e = 0, e = 30°, = oO. 
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(b) Articulated blade; 72 = 0.1. 

Figure 7.- Continued. 



35 

In 

: 2  
I:: 

~- 
I -  

* 

-- 
1st MODE 

I /--- 

2nd MODE 

/ 

Y 

Cantilever blade; r2 = 0.0234. 

Figwe 7. - Concluded. 



. 

0 
0 
N 

(u 

=t 

0 
0 - 

0 
0 su 

N 
3. 

0 
0 - 

rl 
0 

0 

II 

cu 
h 

n 
P 
W 

0 
II 

(u 
h 

CI 

a! 
W 

(u 
x 



37 

. 

(u x 



.. 

m 0 m 

J 

2 

0 

0 
0 

I I  
CD - 
al 

W 



39 

In 
rc\ 
rl =: 

0 
N 

2 

3 
N 
n 

x u 



40 

3 
N 



a, a 
0 a 

CD 

.- 
id' 

W 

0 



42 

1 

0 
(u 
n *- 

0 
N 

0 

c 



0 0 

0 
N 
n 

0 

3 



44 

3 
N 

c 



e 

3 
cu 

&- 
W 

3 



46 

h 

O N  
n 

0 

c 



47 

In 
M 
I 4  

5 

0 
(N 

O 
N 

(u 
n 

0 += 
u 

0 

r? 

0 
II 

cu 
h 

a l +  
V a l  

-kJ 
0 
k 

[II 
0 
d 
-kJ 
al 
k 

I 

rl 
rl 



48 

tu 
n 

3 

0 

c 



In 
K\ 
ri s 

m * cu 

N 
n 

I 

0 

0 cu 0 
( u -  n 



? 
b 

U 
pi 
r 



. 

n 

3 
N n 

0 



52 



53 
c 

rr, 

0 
N 
n + U 

9 - 

0 - N !  

x x  al = 
U 



54 

3 ,  
n 

42- 

n 

0 



55 

. 

c 0 

0 

8 
II 

CD 

n 
0 

W 



0 
CJ 

rl 
P 

0 - 

0 

0 - 

I 

f 
rl 

0 



0 cu 

z 
x 

3 
N 

N 
n 

W 

e 
0 
k 

k 
0 .  
k O  

k 
0 

rl 
k 
F: 
H 

I 

n 
rl 

al 



58 

3 
N 

0 

. 



59 

x x  PI = 

0 
N 

* ?  

o * x ‘  I -  

* ?  

0 

k c 
H 

I 



60 . 

0 
L 
m 

\U 
P \ 
", 

0 In 

3 
N 

N 
n 

U 
pl 
r 

3 
N 

. 

N 

- - 

3 

c 



61 

m 

cu 

0 
N F- x 
v 

In 

a- 

m 

N 

- 

0 

k 
0 -  
k 0  



62 . 

? 
d 
P 

? 

3 
* !  

m 

0 

k 
0 .  
k O  
rn II 
0 2 la, 

In 
M 

. 



In 

rl 
m 

=: 

N 
n 

... 

a H 



64 

D 

? 

3 
N n 

m 

a 

N N m 
n 

0 

.,-I 
c, 
k 
Ld 
a 
Q) 
k 
Q) 

+1, 
9 

G-l 

k 
0 

I 

d 
a, 
k 

.,-I 
2 
I% 

c 



9J 

30C 

2 5C 

. 

2 O( 

x2 

I5(  

I O( 

I I I I I 
0 15 30 45 60 75 90 

&-DEGREES 

(a )  y 2  = 0.  
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Figure 22.- Blade representation. 
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